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Molecular dynamics (MD) simulation is an established method

for studying the conformational changes that are important for

protein function. Recent advances in hardware and software

have allowed MD simulations over the same timescales as

experiment, improving the agreement between theory and

experiment to a large extent. However, running such

simulations are costly, in terms of resources, storage, and

trajectory analysis. There is still a place for techniques that

involve short MD simulations. In order to overcome the

sampling paucity of short time-scales, hybrid methods that

include some form of MD simulation can exploit certain features

of the system of interest, often combining experimental

information in surprising ways. Here, we review some recent

hybrid approaches to the simulation of proteins.
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Introduction
The dynamical properties of proteins play a key role in

their functions. These can be investigated using molecu-

lar dynamics (MD) simulations, where the protein is

represented on the atomistic level and also using simpli-

fied coarse-grained methods. It is fundamentally import-

ant that theoretical methods are benchmarked against

experimental observations, but this has been hampered

owing to the difference in timescales accessible by the

two methods. MD typically accessed timescales of nano-

seconds (ns)–microseconds (ms), orders of magnitude

shorter than the millisecond (ms) timescales observed

by experiment. However, recent advances in hardware

and software have begun to close this gap, most notably

with the first millisecond simulation [1]. The technologi-

cal advances allowing long-timescale MD over the past

few years have been reviewed extensively, as has the use
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of MD in protein folding [2–5]. The use of MD simu-

lation is now firmly embedded in the repertoire of bio-

physical methods. Since the scope of this field is now

broad, we focus on recent highlights where MD has

contributed to ‘hybrid approaches’ for elucidating the

structure and dynamics of macromolecules, where useful

predictions can be extrapolated on even modest compu-

tational systems (Table 1).

Predicting allostery through intramolecular
pathways
Allostery is one of the underlying principles of signal

transduction in proteins where a binding event on one site

of a protein induces binding at another site. Although

classically, allostery was first found in domain interfaces

[6], there has been growing interest in single domain

allostery ever since the experimental work on intramo-

lecular pathways of allostery in the PDZ domain

(Figure 1A) [7]. In that study, Statistical Coupling

Analysis (SCA) was introduced to measure covariation

between position pairs across a multiple-sequence align-

ment of the PDZ family of sequences (Figure 1B). Sub-

sequent mutations at positions that had high scoring SCA

values induced significant thermodynamic changes to the

PDZ domain. Lockless and Ranganathan [7] made an

interesting conjecture that interlocking chains of highly

covarying SCA position pairs constituted intramolecular

pathways of allostery that travel through the body of the

protein.

Hybrid simulations are particularly suited to the study of

single domain allostery. The most commonly studied

example is the PDZ domain, which functions as a mod-

ular scaffold in eukaryotes that bring together receptors

and signaling molecules [8]. PDZ domains bind to the C-

terminus of other proteins largely through a canonical

binding site lined by an a-helix on one side and the last

strand of the central b-sheet on the other (Figure 1A) [9].

One example of a PDZ-based scaffold is GRIP [10],

which consists of seven PDZ domains, some of which

bind AMPA receptors and others bind signaling proteins.

By bringing the receptors and signaling proteins together,

GRIP enhances the efficiency of synaptic transmission.

More importantly, the binding of PDZ domains to the C-

terminus of their target proteins is modulated by allosteric

interactions to other PDZ domains. Allosteric effectors

may thus be identified by the simulation of intramole-

cular pathways in PDZ domains.

A straightforward way of analyzing such intramolecular

pathways of communication simply involves careful

analysis of sidechain–sidechain correlations of straight
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Table 1

Summary of methods

Hybrid method Pros Cons

Temperature coupling to

residues [14,16]

Simple to implement temperature couple to residue Requires backbone constraints, and energy

leaks into the backbone

Rotamerically induced

perturbation [18�,19]

Flexible modeling of local perturbations to identify

direct interaction of residues

Only considers local plasticity

Sidechain Monte-Carlo [17] Exhaustive modeling of sidechain conformations Since it uses Monte-Carlo of the sidechains

over the whole protein, cannot identify direct

interactions via energy flow. No backbone motion

Double-minimum allostery [22] Identifies sidechain correlations during the transition

between large motions

Dependent on knowledge of the crystal structure

of two states of allostery

Elastic Networks +

Replica-Exchange [20,31�]

Effective sampling of the binding site by combining

global motions with extensive temperature search

Complicated protocol and replica-exchange is

a reasonably expensive calculation

FlexPepDock [29] Docks arbitrary peptides to ill-defined binding

site on a protein

Low resolution docking and expensive

computationally

Pepsec [36] Fast peptide docking with reasonable binding

energies for sequence profiles

Requires manual choice of anchor

residues and is designed for determining

sequence specificity

Peptide binding +

protein-design [37�]

Extremely exhaustive analysis of sequence profiles

of a peptide–protein system

May not be easily transferable to other

systems as it relies on the canonical

binding site of PDZ domains

Direct Coupling

Analysis [44��,46�,47��]

The most robust definition of covariation in multiple-

sequence alignment. Predicts structural contacts,

protein–protein interactions, and common-fold structure

Limited to consensus structures of

a family of proteins

Normal Mode + Minimization/

Molecular Dynamics/

Metadynamics [61–64,66,67]

Massively enhances the sampling capabilities

of molecular dynamics simulations

Restricted to conformational changes

that are evident in the starting structure

Coarse-grain domain model of

Nuclear Pore complex [93��]

Unprecedented scale in terms of size and time-scales Will rely on the experimental determination

of systems of similar enormous size
MD simulations. Long-range communication is assumed

to take place if a statistically significant correlation is

found between distal residues. There is considerable
Please cite this article in press as: Ho BK, et al.: Hybrid approaches to molecular simulation, Cu
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The PDZ domain. (A) Schematic of the PDZ domain (6th domain of

Partition-Defective-Protein-6). The bound conformation (1RY4) is in blue,

and the free conformation (1RZX) in pink. The peptide in the bound

conformation is in ball-and-stick and the C-terminal is at the top of the

figure. There is significant conformational change upon binding the

peptide. (B) A heat map of the SCA analysis of covariation in the

multiple-sequence alignment of the PDZ family. Red values indicate high

values of covariation. This is a noisy graph that has been the basis of

many studies of the allostery of the PDZ domain.
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freedom in choosing the relevant parameter in which

to define the correlation. Over the past few years, differ-

ent studies have defined correlations over a wide variety

of measures: from energy fluctuations in PDZ2 [11], to

the entropy of torsional angles in Interleukin-2 [12], and

to relative distance fluctuations in ABL and EGFR

kinases [13]. In all these studies, interesting distal resi-

dues were found to correlate strongly, thus providing a

simulation trace of potential allosteric interactions. These

studies however, do not propose any concrete mechanism

for how the communication is effected between distal

sites.

Several simulation methods have attempted to directly

model intramolecular pathways by isolating certain

physical features. The first method to study this was

the Anisotropic Thermal Diffusion (ATD) method

[14]. In ATD, the PDZ protein is cooled down to

10 K, then, after position constraints are applied to the

backbone and surface atoms, a temperature couple is

applied to a single residue. Coupling between residues

is measured by heat flow, allowing a prediction of residues

that physically couple, and thus carry energy from one

allosteric site to another. ATD has been used to predict

allosteric sites in different systems including a recent

analysis of the Liver X Receptor, which predicted several

allosteric sites upon binding cholesterol [15]. The Pump-

Probe method is a variation of ATD that uses pulsed

energies at set frequencies [16].
rr Opin Struct Biol (2012), http://dx.doi.org/10.1016/j.sbi.2012.05.005
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One drawback with the ATD and Pump-Probe methods

is that much of the applied energy flows along the back-

bone. This generates a large background energy flow that

swamps direct sidechain interactions with the perturbed

residue. One solution to this is a simplified model that

focuses exclusively on sidechain fluctuations [17]. The

PDZ domain was modeled using Monte-Carlo simulation

of only the sidechain degrees of freedom, where corre-

lations between sidechain fluctuations were used to

identify allosteric interaction. In this way, the problem

of energy leakage in the backbone is avoided, but back-

bone plasticity is lost. A variation of the ATD method

solves the problem of backbone energy leakage in another

way [18�]. Rotamerically Induced Perturbation (RIP)

applies the perturbation energy to a residue only through

rotation of the sidechain dihedral angles. A RIP pertur-

bation does not leak any energy into the backbone and

thus, backbone constraints are not needed at all and the

backbone can respond to perturbed sidechains in non-

local contacts. As a result, RIP analysis generates much

cleaner signals of physical sidechain–sidechain inter-

actions in the PDZ domain. Furthermore, when driven

at high temperature, RIP generates a useful map of sur-

face plasticity [19]. High-temperature RIP applied to

residues in a protein equilibrated to room temperature,

induces weakly held surface loops to move. This method

recapitulated known flexible loops in a number of well-

studied proteins [19]. When applied to different PDZ

domains [18�], dramatically different surface plasticity

was produced that were consistent with the known differ-

ences in dynamics between PDZ domains.

Nevertheless these models focus on local interactions of a

sidechain with nearby sidechains and nearby backbone.

Other models have been introduced to model global

responses to perturbation. Perturbation Response Scan-

ning (PRS) focuses on how individual residues affect the

global motion of a protein domain [20]. In the PRS method,

a matrix is constructed that represents the global motion of

the protein using a classical Elastic Network Model

approximation [21]. Using a detailed analysis of this matrix,

changes in the global motion owing to perturbation of

specific residues can be calculated. Another simplified

MD-based method investigates collective motions of allos-

tery owing to ligand binding [22]. Artificial double-mini-

mum distance constraints are applied to residue–residue

contacts in a protein system, allowing the protein to

smoothly oscillate between the bound and free confor-

mation. Another set of artificial potentials force the ligand-

binding state into either the bound or free states. Allosteric

sites are then identified by correlated sidechain–sidechain

motions in the system observed during an MD run.

The main conclusion is that even small rigid domains

exhibit subtle dynamics that can be modeled in different

ways. Methods have been developed that focus exclu-

sively on sidechains, or sidechains with local backbone
Please cite this article in press as: Ho BK, et al.: Hybrid approaches to molecular simulation, Cu
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plasticity, or global motions. The use of restricted models

allows us to isolate specific aspects of motion that induce

single domain allostery.

Restricted models of peptide binding
Ligand binding is clearly an important component of

allostery. Unfortunately, there is as yet no general

solution to the problem of modeling ligand-binding

especially if one considers small organic molecules

[23]. However, in ligand binding systems where a protein

domain exhibits a canonical-binding site for binding

peptide ligands, simplified approaches can be taken

[24]. Given that the ligands are peptides themselves,

the same force-fields as proteins can be used, and this

avoids the complication of parameterizing arbitrary

organic molecules. Well-known peptide–protein inter-

action systems include the PDZ, SH2, SH3, WW,

PTB, EH, and MHC domains [9,25–27].

Recent developments of peptide–protein systems have

focused on how to model protein flexibility. There is a

balance between allowing flexibility in the system, and

keeping the simulation tractable. Many of these systems

are based on the Monte-Carlo Rosetta package [28].

FlexPepDock is a general approach to peptide–protein

binding, where the system iterates between a local

exploration of the binding site using standard Rosetta

local moves [28], and an exploration of the peptide

conformation, where the peptide conformations also

exploit the Rosetta local fragment library [29]. FlexPep-

Dock was shown to have reasonable predictive power

over a wide range of peptide–protein systems. Another

approach used a custom Monte-Carlo model of the pep-

tide binding. In this study, the protein was rigidly con-

strained except for the active site, where the active site

residues was subjected to a local 8-residue Monte-Carlo

move [30]. This model used custom-fitted solvation

parameters, and provided interesting details on the

kinetics of binding.

Nevertheless, these methods only apply local methods of

modeling the active site. Another approach takes into

account global motions of the protein in response to

ligand binding [31�]. In that study, Elastic Network

Model analysis was used to generate a set of constraints

for the global motion of the protein. Using these con-

straints in a replica-exchange MD simulation, a rich set of

protein conformations was sampled, to which peptides

were docked using the standard ligand-binding package

RosettaLigand [32]. When applied to different PDZ

domains, quite subtle interaction differences were found

in the peptide binding.

Large-scale proteomic analysis of binding affinities are

now available that provide highly detailed peptide-bind-

ing profiles for various peptide–protein systems, such as

the PDZ domain [33,34], as well as the SH3 and WW
rr Opin Struct Biol (2012), http://dx.doi.org/10.1016/j.sbi.2012.05.005
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domains [35]. In order to connect with experiment, we

need to push the peptide-binding models further to

generate comprehensive peptide-binding profiles, where

the focus is on speed and relative binding energies.

Several methods have been developed that generate rich

sequence profiles that can be compared to experiment.

Pepsec is a Rosetta-based method that uses constraints to

anchor certain peptide residues to the binding site in

order to limit the search space [36]. Another Rosetta-

based study designed a hybrid method that combines

Monte-Carlo conformational search and protein design to

generate rich sequence profiles [37�]. In this method, the

peptide backbone is docked onto the structure, and a

large ensemble of structures of the complex is generated.

Then, using essentially a protein-design protocol, a search

is conducted over both the chemistry and the confor-

mations of the sidechains of the peptide. This method

generated rich peptide-sequence profiles of several PDZ

domains that were even able to recapitulate changes in

the sequence profiles owing to point mutations on the

PDZ domain itself.

These methods demonstrate a range of approaches that

expand the repertoire of peptide–protein systems. As the

coverage of calculated sequence profiles improves, and

the allostery of the proteins is understood, it may be

possible to predict genome-wide interaction maps

through structural analysis.

Simulation models that incorporate sequence
alignments
Much of the work on intramolecular pathways of allostery

was inspired by the SCA measure [7], which is a formalized

measure of covariation analysis [38–40]. Some recent simu-

lations have exploited recent refinements of covariation

analysis to produce some useful hybrid simulations of

protein–protein interactions, and remarkably, even struc-

ture prediction. The highly covarying pairs of positions,

identified by the SCA measure, are somewhat ambiguous,

and some of them admit no easy interpretation (Figure 1B).

There have been various attempts to improve the measure.

A correction for the SCA term was found that accounts for

phylogenetic correlations [40]. Another study found a

weighting term that accounted for uneven levels of con-

servation at different positions [41]. A clustering analysis of

high-scoring SCA position pairs was used to identify groups

of coevolving residues [42]. Another approach attempts to

disentangle distal from proximate correlations using a

Bayesian network model [43].

The most significant improvement of the analysis of

covariation was the introduction of a global model of

covariation called Direct Coupling Analysis (DCA)

[44��]. Instead of considering each pair of positions as

independent, the DCA uses a global probability model

that treats the correlation between a pair of positions as a

marginal distribution over the global model. The DCA
Please cite this article in press as: Ho BK, et al.: Hybrid approaches to molecular simulation, Cu
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analysis was able to filter out indirect correlations from

direct correlations, leading to much cleaner predictions.

The original application of DCA was applied to a two-

protein docking problem, where DCA analysis was car-

ried out over a combined multiple-sequence alignment of

a kinase–receptor system. It was found that high-scoring

DCA position-pairs between the protein families pre-

dicted key residues that formed the protein–protein

interaction. A subsequent MD docking protocol was

designed around these predicted contacts [45], which

was able to recapitulate the known structure of the

protein complex.

A faster version of DCA analysis was developed [46�] that

allowed a much more extensive analysis over a diverse set

of 131 different protein families. It was found that high

scoring DCA position-pairs in a multiple scoring align-

ment correspond to observed contacts in experimentally

determined structures of proteins from each family. This

confirmed an older hypothesis [39] that the covariation of

positions is largely determined by conserved structural

contacts in a protein family.

An impressive confirmation and application of this hy-

pothesis was recently developed by Marks and colleagues

[47��]. For a diverse range of 15 protein families, they

identified high-scoring DCA pairs of positions in the

multiple sequence alignment. They interpreted these

pairs of positions as structural contacts and fed the pairs

as distance constraints into standard NMR refinement

software. They generated robust predictions of structure

that were typically within 3 or 4 angstroms of known

structures of members of the families. Not only was this

an impressive confirmation of the interpretation of covar-

iation as structural contacts, but this was also a demon-

stration of the power of this method to perform ab initio

structure prediction.

These impressive results with DCA suggests that covaria-

tion analysis of a sequence alignment identifies key struc-

tural contacts that we can directly exploit in simulations.

However, for purposes of allosteric analysis, it would help

to understand exactly how structural contacts contribute to

allostery in single domains. There is a theoretical model

that postulates that allostery in single-domains is trans-

mitted through the rigidification of flexible-regions upon

ligand-binding [48]. Is there such a connection between

structural contacts and intrinsic flexibility? One study

found such a link in the PDZ domains [18�]. In simulations

using high-temperature RIP, it was found that different

PDZ domains exhibited different flexibility in a key a-

helix. In certain strategically placed structural contacts, in

the PDZ domain where the helix was rigid, a strong RIP

interaction was found between a sidechain in the body of

the protein and the helix, whereas in the PDZ domain

where the helix was flexible, there was no such interaction.

These key structural contacts scored much higher SCA
rr Opin Struct Biol (2012), http://dx.doi.org/10.1016/j.sbi.2012.05.005
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values in the sequence alignment than other contacts. We

can thus interpret highly covarying structural contacts as

contacts that are well placed to modulate the flexibility of a

protein, and hence, its allosteric response.

Given the impressive results that have already emerged

from the covariation analysis, exploiting this rich source of

information will surely lead to exciting opportunities for

hybrid simulations.

Unbiased predictions of protein
conformational changes using normal modes
Many allosteric systems require the dynamic response of

a protein to respond correctly to interaction with its

partner. As such, there is a place for the prediction of

conformational changes of protein structures using hybrid

methods. Clearly, methods that use short simulations are

important. But it is more important to focus on unbiased

methods that do not require the input of predefined

transition states, collective variables or pathways. Only

then, can we truly make a prediction of conformational

change. One such method is the classical Normal Mode

(NM) analysis [49–51]. The classical NM method con-

siders the atomic force-field interactions for defining the

Hessian matrix of the atomic coordinates. An approxi-

mation to this is the Elastic Network Model (EMN) that

considers the system as a network of mechanical springs.

The eigenvalues and eigenvectors of the Hessian matrix

thus describe the collective motion of the protein, where

the eigenvalue in particular gives the frequency of the

motion. Standard NM analysis has been used to predict

the large collective displacements of atoms relevant to

enzymatic activity, and binding of ligands or other macro-

molecules [52–55]. NM analysis has also predicted

motions for large-scale displacements corresponding to

time scales approaching the millisecond or beyond for

large complex assemblies of proteins [56,57], which

would otherwise be difficult to study with conventional

brute-force MD simulations [58–60].

NM analysis has been successfully combined with other

simulation techniques, for example energy minimization

where important results have been obtained just by

displacing the structures along the lowest NM frequency

modes using energy minimization [61,62]. NM analysis

has also successfully augmented MD simulation. A new

approach, termed ‘Consensus Mode’ was developed in

order to take advantage of the topological characteristics

of multiple points on the potential energy surface derived

from NM in order to generate more robust modes in free-

energy MD calculations [63]. The lowest NM frequency

eigenvectors describing these motions have been used as

reaction coordinate for computing conformational

changes [64] by using the umbrella method [65]. Meta-

dynamics is another useful method for obtaining the free

energy profiles in the subspace defined by low frequency

NM eignenvectors [66,67].
Please cite this article in press as: Ho BK, et al.: Hybrid approaches to molecular simulation, Cu
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Several NM studies that were able to corroborate exper-

imental findings deserve highlighting. A number of stu-

dies have investigated conformational changes that are

linked to enzymatic activity and allostery [68–70]. In the

case of the bacterial enzyme Glucosamine-6-phosphate

synthase, it was shown that the inner-channel within the

protein linking the two active sites is formed owing to the

collective motions of the protein [61]. This channel could

not be obtained with standard MD simulations. For

docking simulations, a greater variety of conformations

of the protein can be generated by exploring a low

frequency NM subspace. This increased the success of

finding new ligands that are likely to bind with high

affinity [71–74], and to identify allosteric binding sites

[75]. In the prediction of protein–protein complexes

where protein partners undergo important global confor-

mational changes, the NM approach was able to generate

conformations that were suitable for binding [76–80]. The

NM-generated conformations also improved the correct

ranking of docked complexes, mimicking the induced fit

mechanism by global movements [81–84]. NM analysis

has also been applied to the study of macromolecular

assemblies from electron microscopy [85–87], as well as

the interpretation of SAXS experiments [88–90].

The simulations of proteins discussed here typically

operate on an atomic level of detail. In cases where atomic

interactions are not so relevant, one can always simplify

the representation of the protein to a coarse-grained (CG)

model [91,92]. Whilst a general CG discussion is beyond

the scope of this review, a recent CG model that has

successfully modeled a system of unprecendented size

should be highlighted. This impressive example studied

the transport of cargo through the nuclear pore complex,

which is one of the largest macromolecular assemblies in

eukaryotic cells [93��]. New insights were obtained as to

how this system can discriminate between the active and

inert cargos, the passage time as a function of the size of

the cargo, the interactions that are involved during the

translocation, and many other properties.

Conclusions and outlook
The ultimate goal of MD simulation is to provide a

complete theoretical model of the chemistry of proteins

that can accurately and efficiently generate structure,

dynamics and interactions. Nevertheless, the kind of

proteins that have been selected by evolution only con-

stitute a subset of all possible protein sequences. These

proteins belong to the subset of protein sequences that

exhibit foldability, marginal stability at physiological

temperatures, restricted dynamics, and efficient speci-

ficity in interaction. These are all properties that can be

exploited in simulation, and many of the hydrid methods

explicitly do this. Whilst the progress towards longer and

unbiased MD simulations of individual proteins is an

exciting development, in order to connect with exper-

iment, especially given the growing amount of proteomic
rr Opin Struct Biol (2012), http://dx.doi.org/10.1016/j.sbi.2012.05.005
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data, there will always be a place for approximate tech-

niques that are efficient enough to generate predictive

results for entire groups of proteins.
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